Albert DOROFEEV
 
For public distribution

Policies versus Threats
Clarifying the Security Target
10th International Common Criteria Conference, 2009

The usual approach to the Security Problem Definition in a Security Target is to rely on the description of Threats and Assumptions to demonstrate how the product might resist attacks. Unfortunately, the Assumptions and Threats are by necessity vague and incomplete, leading to a vague and incomplete statement of the Security Problem. Moreover, the attacks that represent the Threats are what you call a “moving target” – they change from one day to another, so mapping to them in the Security Target is a daunting task.
In this paper, I demonstrate that a better approach is to rely on the Organisation Security Policies to specify exactly what your product must do. I show how to replace the reactive Assumptions and Threats with the pro-active Organisation Security Policies. I explain how to create a complete and precise set of policies that results in an immediately clear understanding of the security objectives of the product.

This paper uses a Smart Card TOE and CC v.3.1 to exemplify the concepts.

Traditional pains
Traditionally, the thinking goes that the statement of the security problem for a product (i.e. the Security Target, basically) must specify the attacks that the product can resist. We usually create a set of assets that have to be protected, then we set a number of assumptions about the environment and the product itself. The assumptions serve to limit our “responsibility” in a way that meaningfully restricts the possible scope of attacks under consideration. After that, we can specify what threats we expect the product to face.
Once the threats and assumptions are set, we basically map them to the specific attacks, setting objectives to protect against this and against that. In essence, we directly specify the attacks that the product can defend itself against through a fairly obscure (in this case) language of threats and objectives.

Why does this happen? Because we think of our products in terms of attacks. So when we come to making the statement of the security problem we fall into the trap of translating what we know and are used to into the language of CC directly. The CC allows for this, of course, but is this a good modus operandi?

Let’s consider a familiar (to me) example of a smart card. The smart card faces an inherently hostile environment and must protect itself against a myriad of widely different attacks. People continually invent new attacks against smart cards. Some of these attacks make big news while others don’t. We have to know in advance, however, what our smart card products should protect themselves against. And this is not always possible.

First of all, we make a number of assumptions to limit the operational environment and the activities of adversaries. This is done out of necessity. Otherwise the card would need much better designed protection at various stages before it reaches the customer. On the other hand, if there were no limits, we would possibly need to consider quite a lot more within the evaluation scope, which would increase the costs of both the evaluation and the final product. So, limiting the scope through assumptions is a necessary evil. If we could get by with fewer assumptions, however, this situation would improve.

Each assumption is in effect a risk. By assuming something about the product or its environment, we assume the risk as well. The risk is that the assumption is incorrect now or will become incorrect some time into the future. We balance the trade-off between the risk of the assumption and the cost of not making the assumption. If we had a way of removing the risk without adding to the cost, we would be happier.
Then, we make the threat list. To do so we take the list of known attacks and disguise the attacks as objectives. Then we further abstract those objectives to create threats. Is there anything wrong with this logic? Well, we are working the wrong way around, aren’t we? We are supposed to work from the threats down to objectives and requirements so that we find out eventually what we need to do. In reality, we do the opposite – we know what we need to do, but we just need to describe it somehow.
There are two important problems with this approach. First, it is rather pointless, isn’t it? Instead of a proper top-down security design, we get a pure formality thrown together just to staisfy the requirements of CC. The real stuff is at a much lower level and does not really link with the top level. The second problem is, information is at risk of being outdated as soon as we write it down. New attacks are being found all the time so, by definition, the attacks in the form of objectives and requirements are behind the times. This is why we have the CC supporting documents such as “Application of CC to integrated circuits.” Those documents tell the labs that the attacks used by the lab must be up-to-date even if the developer did not consider or know about the new ones.

So, clearly, what we have now with the Threats is basically (a) pointless and (b) outdated. The information contained in Threats and resulting Objectives is not really used by the evaluator. It is, in fact, misleading, because readers of the Security Target might believe what they read but it is connected only remotely to what the lab really did verify during the evaluation.

To summarise, the traditional approach to stating the security problem is really slightly pointless, a bit misleading and the cause of a significantly outdated Security Target even by the time it is first published.

The spirit of CC

Let’s have a look at the spirit of the Common Criteria. What is it supposed to be giving us? The statement of the security problem under CC is supposed to give us a pretty good idea of whether a product is suitable for our purposes and in our environment. Readers of the Security Target supposedly understand what the product does, what it is intended for and what the product’s environment might be like. With all that information, the customer is supposedly able to make an informed choice by comparing between various security products.

Naturally, the Introduction of the product explains a lot about the product and its uses, but what about those semi-formal Assets, Assumptions and Threats? How do they help to find out what the product is for and how it can be used?
What does “Assets” tell us? Assets are the core of the product. One would compare the developer’s understanding of assets with one's own understanding of assets to see whether there is an alignment in values, so to say. If the assets designated by the developer differ from the assets that the customer considers important, the chances are that the customer’s assets remain unprotected and the product becomes useless for that particular customer. So assets are essential in giving the first understanding of the usefulness of the product.

What about “Assumptions”? Assumptions are the things on which we rely in the product or in the environment. They are, in effect, limiting factors. The assumptions limit the area in which the product can be used. The stated security is valid only as long as the assumptions are correct. Here another aspect is important – can the customer guarantee that the assumptions always remain valid, even if they are valid today? This is the risk the customer must assume in using the product. Therefore, the fewer such limits the product has, the better.

Coming to the “Threats”, we might feel it necessary to describe fully all of the threats that the product might face in real life. The customer would be happy to review the understanding of the threats, to check the alignment between himself and the developer. If all of the things that the customer considers to be threats are considered by the developer, we have a good alignment. But herein lies a catch, or even two. 
First of all, different customers consider different threats and different environments pose different threats, so developers end up trying to gather up and write down all possible threats that they and their customers can think of. This enlarges the Security Target unnecessarily for a specific customer because each individual developer and customer would consider only a subset of the threats. When a customer finds a peculiar threat, the developer must include it in the Security Target for everyone, regardless of its relevance to anyone else. And here again we encounter the same problem – by this stage it is already out of date. The threats evolve in line with the attack methods. So the threats remain incomplete and outdated at all times. There is simply no practical way of making a complete list of threats and keeping it up to date.
So we may conclude that "Threats" gives some idea to the customer about the protection that the product affords, but it can never be satisfactorily complete or up to date. Therefore, I believe that the Threats must list the “specialties” of the product. All the 'generic' threats that all products face – what is the point of listing them? They take up space and they do not add value to the customer’s understanding.
Here we come to an important concept that CC is enforcing nowadays. The product must follow some generic security principles and resist generic attacks, remaining in effect “not broken”. While a couple of years ago it was possible to write a Security Target and pass evaluation for a non-functional product, that is now impossible. The labs must first check for the generic operation, consistency, stability, etc. of the product. If the product fails these generic tests the evaluation cannot proceed and the product-specific threats are not considered.

To give an example, we could write a Security Target that does not require a smart card to be resistant against attacks that employ power analysis. Naturally, the CBs would not let it pass (I suppose), but formally, from the CC point of view, it was perfectly acceptable. The product would be easily breakable but it would be, at least in theory, certified to the highest level of security. Now this kind of nonsense is impossible. The product would be checked for such simple things as whether something was written in the Security Target.
Now, did we mention “Security Policy” already? No, I am afraid not. That is what is often ignored by the Security Target writers. What is the “Security Policy”? Traditionally, Security Policies were set for the environment, for things beyond direct control of the TOE. This was done because all the direct functionality was explained in the context of countering the threats. This, however, does not necessarily need to be the case. The policies may describe any internal or external security measures, additional security problems and solutions. We can use the policies easily to describe the complete security problem, with a few exceptions that are best described through other methods.
Using the Security Policy to describe the product makes a positive statement about the function and purpose of the product, its advantages and strengths.

There remains a question of suitability of the product for a particular purpose. The user must select the product based on the security features it provides. The selection is presumed to be done on the basis of the descriptions in the ST.

When the Security Target describes Threats, the mapping between the anticipated attacks in the user's environment and the Threats of the ST is straightforward.

When the ST describes the OSPs, we must provide some mapping between the user's expectations of the environment and the attacks to the defences described in the ST through the OSPs. So in this case it is not straightforward to map and select.

On the other hand, having defences specified can provide more useful information because a user might judge them as being sufficient against an attack that we did not foresee and otherwise would not include in our specification of Threats in the ST.

Using Security Policies

When using Security Policies to describe the product, from the beginning we need to consider the functionality of the product rather than the attacks against the product. The Security Policies describe the product’s security functionality at the highest level, in the most high-level language. The Security Policies give an understanding of what sorts of things the product does, rather than does not do.
Once the product’s functionality is described in terms of the Security Policies, those policies directly and naturally translate into the Security Objectives and further down the line. The mapping is usually very straightforward and requires little expertise if the Security Policies are properly and clearly written.

Let’s consider some examples from the familiar (to me) smart card world.

A common way of talking about the security of the smart card is to talk about it in terms of threats. For example, the security of a smart card could be described as follows (where A.* = assumption, T.* = threat, P.* = policy):

· A.Process-Card – Dedicated security procedures are assumed to be established for the delivery of the TOE between the parties and for the protection of the TOE beyond the control of the Developer before the final delivery to the User.
· A.Secure-Key – The cryptographic keys generated outside the TOE are assumed to be reliable, secret and adequately protected from disclosure.
· T.Logical_Attack – The TOE allows for software download, so an attacker might attempt to use this capability to mount an attack against the TOE.

· T.Eavesdropping – The TOE and its communication channels might be monitored and an attacker might attempt to inject data to mount an attack against the TOE.
· T.Physical_Probing – The TOE might be subjected to an attempt of a physical modification to bypass the protection.
· P.Access_controls – The Administrator can configure an access control policy that links the access control mechanisms with the TOE assets.
· P.Mode – The Administrator sets up the TOE and switches it to the Operational Mode before delivering to the User.

What does this really tell us about the security functionality of the product itself? In fact, from this we cannot deduce what the product does. The product could be doing nothing at all except protecting itself; there is no apparent mention of any useful security function.

The whole description is focussed on protecting the TOE from its environment and how the TOE defends itself and so on. But what does it actually do? What is the security functionality that this product can perform for the customer? If we did not know we are talking about a smart card, we would have not the slightest idea what this product is, what it is for and what it can do. And this is the strange reality of most Security Targets, nowadays. The Security Target describes a lot about how the product can defend itself should an attempt to break it occurs, but it mentions very little if anything at all about the real security services that the product provides.
Of course, this is the result of the fairly long history of the use of Common Criteria, where such descriptions were necessary. Times are changing, though; we moved ahead to CC version 3, but… the Security Targets are still written in the same way as before. We need to make a conscious effort to break away from the old habits and move with the times. Let’s see how we can describe a smart card now, given the power of the new CC. In this case we will use only the policies:
· P.Confidentiality – The TOE must provide means to protect the confidentiality of the stored assets.

· P.Integrity – The TOE must provide means to protect the integrity of the stored assets.

· P.TransferSecret – The TOE must provide means to protect the confidentiality of assets during transfer to and from the outside of TOE.

· P.TransferIntegrity – The TOE must provide means to protect the integrity of assets during transfer to and from the outside of TOE.

· P.Configure – The TOE must provide means to configure the level of protection for each of the assets.

· P.Keys
 – The keys generated for the use by TOE must be secure. The keys for the use by TOE must be generated and handled in a secure manner.

Do you see the difference? The Security Target does not talk anymore about what TOE will do to itself. Instead, the description shows what the TOE does to the assets, to the data provided by the customer. Now we clearly can see that the purpose of the TOE is to maintain the integrity and confidentiality of the user data both inside the TOE and during transfer, as well as to provide some means of configuring the protection.
We have an instant improvement in the understanding of the product security functionality, once we describe it in terms of Security Policies. We use the policies to describe what the product does, instead of using the threats and assumptions to describe what the product does not do.
What happens to the attacks and threats and so on? The laboratory should take care of that. We described what the product must do. Now the product must do the same regardless of whether it is subjected to an attack known to the laboratory. So it will be the responsibility of the laboratory to verify the resistance of the product to all known attacks and testify that the product in fact works as advertised even in a hostile environment. We do not need to specify the Threats or Assumptions for the product because we will simply accept the “standard” threats and assumptions for our class of product and assume that the laboratory well knows what to do with the product.

What happens to the rest? Well, the policies translate directly to objectives for the product and environment. Those, in turn, directly translate to requirements. The intended flow of security design from higher to lower levels of abstraction becomes perfectly possible with this approach.

The Security Target becomes easier to read and, interestingly, smaller in volume. We do not need to update the Security Target when something changes, such as when new attacks are found or the environment changes. We depend only on the real security functionality of the product itself. Now the Security Target can remain unchanged for the life time of the product line.

Conclusion

You see that the use of the Assumptions and Threats to describe the security functionality of a product is a legacy. This kind of abuse of Common Criteria is not necessary any longer in the new version. So it is time to move on and write the Security Targets in a different, more effective way.
What we gain by using the Policies instead of Assumptions and Threats:

· Security Target explains what the product does instead of what it does not do.

· Security Target talks about the security functionality for the customer, not about the security functionality of self-protection.

· Security Target becomes more streamlined, easier to write, understand and evaluate.

· This approach fits perfectly with the “top-down” security design.

Ultimately, this change to the “positive approach” saves us significant costs during the preparation and evaluation of a product. These savings add up during the life of a product line.[image: image1.png]



Policies versus Threats
Updated: Albert Dorofeev, 31-Aug-2009
Page 1 of 6

